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FrtACTIONAL STEP METHODS FOR REACTING SHOCK WAVES 

Phillip Colel1a L, Andrew Majda 2 , and Victor Roytburd 3 

ABSTRACT. Fractional step schemes are the Obvious 
candidates for use in numerical modelling reacting 
gases. Per each time step one should have the in­
gredients (fractional steps) performing the follow­
ing tasks: 1} integrating the equations of the 
inviscid fluid dynmaics. 2) advancing the chemistry 
equations. 3} resolving the dissipation mechanisms. 
The numerical experiments with the tnviscid frac­
tional step schemes based on the use of either the 
Gudunov or second order Godunov methods for the 
fluid dynamics exhibit the following remarkab1e 
behaviour: A) For very fine meshes. the Z-N-O wave 
is completely resolved. B) For moderately fine 
meshes (i.e., meshes yielding ~ery high resolution 
in the nonreacti~e case), a numerical bifurcating 
wave pattern emerges. The latter pattern is similar 
to a precursor weak detonation. The explanation of 
this phenomenon is given within the context of 
simplified model equations. 

1. INTRODUCTION. In this paper we discuss several pecul iar 

theoretical and practical computational properties regarding 

the structure and stability of reacting shock waves. The waves 

which we study are defined by solutions of the compressible 

Navier-Stokes or compressible Euler equations for a mixture 

composed of chemically reacting species in a single space dimen­

sion. 

The compreSSible Havter-Stokes equations for d reacting gas 
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are rather complex even in a single space variable. and it is 
not surprising that simpler model equations for the high ~ch 
number regime have been suggested ([4].[S].(7].[9]). These mac 
systems have transparent analogues of many featur~s of reactinf 
gas equations (see [7J.(5] for details). 

One of the objectives of this paper is to use the predict!c 
of the simpl ified model system both for theoretical p'jrposes .!r 

as a diagnostic for numerical modelling of the more complex 
equations of reacting gas flow in the shock wave regime. Th~ 

authors advocate the use of this Simpler model equations for 
numerical code development for shock phenomena in reacting ga§t 
in much the same fashion as the Burgers equation has provided 
both a wide class of Simple test problems and the analYSis of 
dHference schemes for the Burgers equation has influenced ca­
development for nonreactive compressible gas flow. 

A natural method for numerical simulation of reacting shoe 
waves is provided by fractional step schemes which allow for 
separate treatment of all the basic physical mechanisms on e~c 

time step. We use fractional step schemes with three 1ngredie 
per time step: 1) the inv;scid hydrodynamics is solved by t~ 

Godunov or second order Godunoy ([3]) methods. 2) the chemist 
equation is advanced by explicit solution of the O.D.E. for ~ 
fraction g1ven the temperature. 3} the dtffusion equation i~ 

solved via the Crank-Nicholson or backward Euler methods. ~ 
a class of numerical schemes is one of the obvious candidate~ 
for use in modelling reacting gases given the current develo~ 
of methods for solving the compressible Euler equations. 

One of the objectives of our work here is to assess the ~ 

formance of the fractional step schemes for different mesh it 

This paper is organized as follows: In section 2. we beg 
by listing the equations of compressible reacting gas flow an 
describing the simplified model equations. then we describe t 

numerica' methods used in the paper. For the calculations t~ 

section 3. the shock layers are fully resolved. Our objecti~ 
there are to study the structure and dynamic stability of re-
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acting shock layers on such a length scale where diffUSive 

mechanisms are important. 
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Resolving detonation waves on viscous length scales is not a 
practica1 option for a large scale reacting gas computation with 

many wave interactions such as the problem of transition to de­
tonation. In section 4, we set all diffusion coefficients to be 

zero and investigate the problem of computing the spiked Z-N-D 
detonations of the inviscld reacting Euler equations on coarser 
meshes. It turns out that for moderately fine meshes (i.e •• 
meshes yielding very high resolution is the nonreactive case), 
the numerical experiments with the inviscid fractional step 
schemes with either the Godunov or second order Godunov method 
exhibit a nonphysical bifurcating wave pattern with a structure 
simil iar to a weak detonation wave. It 1$ worth noting that 
qualitatively similar nonphysical wave patterns were reported by 
other researches (see [8]). 

Finally, in section 5. we give a theoretical explanation for 
the computational phenomena on coarse meshes discussed in 
section 4. 

2. PRELIMINARIES. 

~ CompreSSible ~-~ Equations far ~ Reacting Mixture. 
We assume a standard simplified form for the reacting mixture 
throughout this paper. Thus. there are only two species 
present, unburnt gas and burnt gas, and we postulate that the 

unburnt gas is converted to burnt gas by a ane·step irreversible 
chemical reaction. Under the above hypothesis the compresslble 
Navier-Stokes equations for the reacting mixture ((10]) are the 
system of four equations. 

t)t + {pu)x = 0 

(pu)t + {pu2 + p)x = ~uxx 
(2.1) 
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(pZ}t ... {puZ)x -I' K( T) Z + (DZ ) 
x x 

I' 1 s the density, u is the fluid velocity, 

specific energy~ and Z is the mass fraction 

The tota 1 spec i fie energy t E has the form. 

E is the 

of unburnt 

(2.2) 

with e the specific internal energy and qo the amount of 

heat released by the given chemical reaction. For the assumed 

ideal gas mixture (with the same v-gas laws), the pressure and 

temperature are defined respectively by the formulae p = (Y-!)Qe 
and T = p/pR x M with R, Boltzmann's gas constant, M the 

molecular weight, c the specific heat, and y defined by 
C> 

Cp(y-l) = R. The factor K(T) 1n (2.1) is strongly dependent 

on temperature and has the form 

(Z.J) 

with KO the reaction rate. The function .(T) typically nas 

the Arrhen 1 us fom. 

or for computationa1 purposes. the approximation for large A 
given by ignition temperature kinetics, 

1, T ) Ti 
t{ T) 11 

a. T < Ti 

w;th T; the ignition temperature. 

The coefficients llt At and 0 in (2.1) are coefficienU 

of viscosity. heat conduction. and species diffusion respective­
ly. The compressible Euler equations for the reacting mixture 

are the special case of (2.1) ~;th II : A = 0 ~ o. 

The Simplified Model Eguations. The simplified model equatons 

for the shock wave regime derived through asymptotic l;mlts from 



\NO V. ROYTBURD 

Z + (01 ) 
x x 

e fluid velocity .• E is the 

he mass fraction of unburnt 

has the fonn. 

(2.2) 

9Y and QO the amount of 

reaction. For the assumed 

-gas laws). the pressure and 

Y by the formulae p • (Y-l)pe 
lnls gas constant. M the 

: heat. and y defined by 

(2.1) is strongly dependent 

HT) (Z.3) 

function +(1) typically has 

app!Oximation for-.!Jarge A 

ticS". 

o in (2.1) are coefficients 

species diffusion respective­
ons for the reacting mixture 

1 1J a >. :; 0 ;a O. 

The simplified model equatons 

through asymptotic limits from 

FRACTIONAL STEP METHODS FOR REACTING SHOCK wAVES 

the system in (2.1) (see [9]) have the form 

z = K~ (u) Z 
x 

au xx 
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(2.4) 

where u is an asymptotic lumped variable with some features of 

pressure or temperature. Z is the mass fraction of burnt gast 
qo > 0 is the heat release. S ) 0 1S a lumped diffusion coeffi­

cient, K is the reaction rate. and t(u) has a typical fonn as 

described below (2.3). The reader should not be confused by the 
appearance of Z on the left hand side of (2.4) rather than Z x t· 
The coordinate x in (2.4) is not the space coordinate but is de-

termined through the asymptotlcs as a scaled space-time coordinate 

representing distance to the reaction zone; the x-differentiation 

occurs because Z in (2.4) ii convected at the much slower fluid 

velocity rather than the much faster reacting shock speed (see [9J 
for the details). With these interpretations the equations in 
(2.4) become a well-posed problem by prescribing initial data 
UO(x) for u{x.t) at time t = 0 and prescribing the value of 

Z(x.t) as x +. (corresponding to finite values ahead of the 
reaction zone), i.e. t ZO{t} should be specified with the boun­
dary condition 

(2.5) 

In this paper, we always set ZO(t} = 1 for Simplicity. 

The Numerical Methods. Now we describe the basic fractional step 

numerical method used in solving the model equation from (2.4). 

We set w = (u.Z). Given mesh values w~ = (U~, Z~). in the 
J J J ' 

f~ u
j 

by using a first fractional step we determine u~+1/2 from 
J 

finite difference approximation to the inviscid Burgers equation 

Ut + (u 2 /2}x = 0 • 

In our computations we use Godunov's method or a second order 
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Godunov method ([3]) as the flnite difference approximation. In 

the next frdctional step, we determine Z~+l as tne solution 
J 

of the O.O.E. 

Zx K~ (u) Z 

with u given approximately by u~+1/2. 
J 

We march from posltive 

values of x to negative values of x and use the boundary 

conditions Zo = 1 on the right end of the large interval where 

the calculations are carried out. Given the values of u~+1/2t 
J 

the above O.O.E. is linear in Z and we solve it by the trape· 

zoidal approximations of the lntegral in the exact solution 
formula to derive 

with Z~+l = 1 for j large enough. Finally, in the third sweep 
J 

of the fractional step method we solve the diffusion equation 

U t - 6u xx QOZx = qo~(u)Z • (2.7) 

The linear diffusion equation on the left-hand side of (2.7) is 

discretized by using either the backward Euler or Crank-Nicholson 

methods with initial data u~+1/2 The value of u~+l is then de-
J J 

termined by sol~ing this inhomogeneous difference equation where 

the values for (u~+1/2 .Z~+l) are used 1n the approximation of the 
J J 

forcing function on the extreme right hand side of (2.7) at time 

level (N + 1)6t. This completes the description of the basic 

fractional step method for the simplified model equation. Obvi­

ously, the only stability condition needed in the method is the 

C-F-l condition, 

required in the first sweep. 
The frae ti ana 1 step algorithms t wh 1 ch we use for the reacting 

compressible Navier-Stokes equations are organ1zed Similarly. 
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The same three basic fractional steps are implemented to advance 

the solution to the next time level. We refer the reader to [2] 
for details. 

3. THE STRUCTURE OF REACTING VISCOUS SHOCKS. 

~ Structure for ~ Simplified Model System. We begin with a 
brief summary of the structure of the travelling waves for the 

model system (2.4) (the details can be found in [7)). Consider 
a preshock constant state WR = (UR, 1) in chemical equilibrium so 
that ,(UR) = O. We study travelling wave solutions of (2.4) with 
the given preshock state wR and a fixed speed s. We seek 

special solutions of (2.4) with the form w = w (t). where 
~ ... (x-st)/B. so that 

lim w(t) 
~-

lim w(() 
( .. _GO 

where u
l 

needs to be determined. With Z = qOZ and KO =-

substitution of the above form of w into {2.4) leads to 
autonomous system of 2 nonlinear O.O.E.'s. 

u l :: u2 - su - Z + C • Z· = I{O. (u ) Z • 

( 3.1 ) 

SK. 

the 

(3.2) 

where the integration constant C is determined by wR. The 
phase portrait for system (3.2) is depicted in Figure 1. 
The saddle point (U L*, 0) and the nodal point (uL*'O) are the 
only limiting values for the travelling wave solutions when 
( ....... They correspond to the weak and strong detonation waves 

propagating with speed s and determined by the Chapman-Jougent 
theory. Thus, for a fixed positive va1ue of KO = BK, there is a 

critical heat release. qCR' so that 
A) For qa > qCR' a strong detonation travelling wave profile 

with speed s exists connecting (u Rt 1) to (u l *, 0). 

S) For qa = qCR' a weak detonation travelling wave with speed s 

exists connecting (u R' 1) to (U L*. 0). 

e) For qo < qCR' no combustion wave moving with speed s is 

possible. 
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i. 
l - / 112 u - SlJ - Z ... c 

.. 0 

} . 

u 

Figure 1. 

A similar behavior occurs if the heat release is fixed and KO 
is varied: strong detonations for KO < KcRt no connecting pro­
files for KO > KCR (see [7J). We make this remark because the 
reaction rate ;s the quantity actually varied in some calcula­
tions reported below. 

Graphs of the typical wave profiles as the heat release ;s 
varied, are presented in Figure 2. 

u 

Fig. 2. Shape of travelling wave profiles. 
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The question of dynamical stability of these profiles was ad-

dressed in [2]. In numerical experiments the special initial 

data. 
0 0 X > x > URI qQ' 

uO{x) ZO(x} (3.3) 
0 o , 0 UL*· x < x < 

with Qa > qCR ' evolve to the strong detonation wave moving with 

speed s. (Note that the data in (3.3) define an inviscid 

strong detonation of speed s). Thus. numerical calculations of 
[2] demonstrate the dynamic stability of strong detonation waves 

in the model. 
Of special importance for us is the question, what happens 

when qo is below the critical level t qo ( qCR' so that no travel­
ling wave profile moving at speed s occurs. In this case, the 
"shock tube" initial data (3.3) evolve into the following bifur .. 
eating wave pattern: An approximately self*similar wave pattern 

given by the weak. detonation moving with speed s· t S' > s • 
followed by a fluid dynamics viscous shock moving with the speed 

s· < s. This wave pattern is illustrated by the graphs in Figure 
3. The graph of Z included in the last diagram shows that the 

8 

~----------------uo -4.00 -2.OG 0.00 2.00 

Fig. 3. The bifurcating wave pattern at 160. 320. 'and 400 
t 1me steps. 

chemical energy is released in the precursor wave. Note that 

the graphs are presented in the coordinate system moving 
with speed s. 
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Wave Structure for the Reacting Compressible Navier·Stokes 

Equations. The theory of combustion wave profiles for the reacting 
gas flow equations from (2.l) ;s considerably less complete than 

that for the model equations. Nevertheless. Gardner [6] has 
recently proved the existence of viscous strong (and weak) deton­

ations for varying (and exceptional) values of the heat release 

and wave speed. One consequence of the results in [6] is a 

scenario for the wave structure with varying heat release qualita­

tively similar to that discussed above for the model equations, 
in fact. his method of proof involves deformation to the travel­

ling waves of the qualitative model from [7]. This fact both 
provides a partial rigorous justification for the model and also 
suggests that similar dynamically stable wave structures. as des­
cribed earlier in this section for the model. would also occur for 
the reacting compressible Navier-Stokes equations. The numerical 

experiments that we discuss in the remainder of this section. 
confirm this conjectured behavior. 

We use the fractional step method with the second order 

Godunov method for the inviscid hydrodynamics sweep. We intro­
duced the rescale variable Z : qOZ rather than Z and the initial 

data was always taken as the piecewise constant initial data 
defining a C-J (Chapman-Jouguet) detonation. i.e., the initial 

data for (P.~tUt Z) had the form 

(po.Po.O.qo} t 

(P1tP1,u1.O) • 

x > 0 

x , a 

where given the preshock state for x ) O. the post-shock state 

defined for x , 0 satisfied the Rankine-Hugon;ot relations defin­

ing a C-J detonation. The numerical calculations were performed 

on a finite interval with Dirichlet boundary conditions, and to 

avoid the computational expense of a very long interval, the 

solution was allowed to run until the wave came within d fixed 

number of zones from the right edge of the grid, then the 
solution was shifted from the right to the left to Keep it fixed 

on the interval. Our graphical displays retain this computa-
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tiona1 artifact and focus on the fastest moving wave pattern, 

tn this section. diffusive length scales dre completely 

resolved computational1y. but for emphasis we will work in dlmen­

sional leGS) units which are typical ones for a viscous reacting 

shock layer. The detonation waves which we study have fair1y 

small heat release and are modeled on initial data for the pre­

snack state corresponding to lSS ozone and 75~ oxygen at roughly 

room temperature in the Olone decomposition C-J detonation. 

The first series of calculations is concerned with the emer­

gence of a strong detonation wave from the C-J initial data 

described above. The pressure and chemical energy profiles of 
the solution are given 1n Figure 4. This solution is numerically 
steady in a reference frame moving with the waye speed. 

!1 

I. 

• t...-~ ______ ....I t... '--_______ ...1 

_.- ZOO 

I ~ Hunt( i i 
Fig. 4. Dynamically emerging C-J detonation wave. 

For the second series of dynamic calculations. we increased 

(somewhat arbitrarilly) the reaction rate fivefold. All other 

parameters and the initial C-J data were kept fixed. By analogy 

with the model system, one might anticipate a bifurcation wave 

pattern if the reaction prefactor KO and the heat release qo 
satisfy qo < qCR(KO)' The time series of solutions is presented 

in Figure 5. where only the pressure and chemical energy plots are 

displayed. As is apparent from the chemical energy plot. all the 

chemical energy is released in the precursor wea~ detonation wave 

as anticipated in the model system. The slower moving trailing 

wave profile is an ordinary fluid dynamic shock. 
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Fig. S. Dynamically emerging precursor weak detonation 
at 218 and 424 time steps. 

.. .. .. .. 

The calculations described above were performed with the" space 

resolutions 6x : 25A (Figure 4) and 6x = 15A {Figure 5). With 
these mesh sizes the ShOCKS and the reaction zones are fully 

resolved (- 50 meshpoints in the shocks. ~ 200 meshpoints in the 
reaction zones). We remark that the same wave structures emerged 
under mesh refinements. 

4. INVISCID CALCULATIONS. 

The computational meshes used in the calculations from section 

3 are several orders of magnitude finer than those that could be 
used in a typ;cal large scale computing problem. On much larger 

spatial scales the effects of diffusion are ignored so in this 

section we report on calculations with the inviscid reacting com­
pressible Euler equations. Since it ;s an interesting problem to 

develop numerical methods which can capture the significantly 

higher pressure peaKs which occur in the structure of Z-N-D waves, 

we assess the performance of the inv;sc;d fractional step methods 

in such a calculation. We note that any algorithm based on the 

C-J theory alone (such as [lJ) automatically will ignore the 
Z-N-D pressure spike in the travelling wave structure no matter 

how fine a mesh ;s used. 
For comparison, we used as initial data the same C-J detona-
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ticn wave which we used previously in section 3. In the calcula­

tions reported below we always used 300 mesh points while the mesh 

size and the computational domain we~e changing. We took Ax = oR 
where 0 is varied from 0.1 to lOs. The constant RO = SOOA is a 
characteristic length scale which measures the internal structure 

of the reaction zone whose width is roughly 30 RO' 

The graphs in Figure 6 display the values of the pressure and 

chemical energy for the travelling waves that emerged from these 

It 

II 

. '------, .... '--______ ..-1 hi. 

iii i ; i 
HUlOlt· . . 

Fig. 6a. ax·.l RO 

calculations with the C-J initial data. 
For 6x = .1 Rot the reaction zone was completely resolved and 

the expected Z-N-D profile was computed by either method. Already 
at ax : 10 RO. neither numerical method has any pressure peak 

higher than 8 atm. On this mesh the Godunov scheme already clearly 
exhibits a numerical bifurcating weak detonation pattern 
qualitatively similar to the one described in section 3 with all 
chemical energy released too soon in the precursor numerical weak 

detonation wave. The second order Godunov method also exhibits an 

incorrect wave pattern on this mesh. On a mesh with ax = 102 RO' 

both methods exhibited totally non-physical bifurcating wave 
patterns with precursor numerical weak detonations. On even 
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Fig. 6. Dynamically emerging numerical wave patterns with meshes 
~x 3 10 R t 102 R , and lOS R. (The black line represents the 
Godunov mQthod wh~le the dashQd line represents the high order 
Godunov method.) 
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coarser meshes, the same approx;mately self similar non-physical 

discrete wave pattern emerged as indicated by a comparison of the 

graphs in Figure 6d with Ax = 105 RO and Figure 6c with Ax = 102 

RO_ We recall that the mesh with Ax = lOS RO has 300 mesh points 

in a region only 1.5 meters long. Although we do not report the 

detailed time history here for these calculations, the numerical 

weak detonation wave that emerges is always moving at the speed of 
one mesh point per time step. 

A similar computational phenomena ~ccurred for the fractional 

step schemes for the model system wlth the Godunov or second order 

Godunov methods. 

5. DISCRETE WEAK DETONATIONS. 

The calculations from section 4 on coarser meshes w;th the 

Godunov fractional step schemes yield a bifurcating numerical pat­

tern with a discrete weak detonation wave as a precursor. These 

wave patterns qualitatively resemble the analytic bifurcating wave 
structures documented as stable exact solutions of the reacting 

Navier-Stokes equations in section 3. However, the wave patterns 
from section 4 are purely a numer;ca' artifact sfnce the numerical 
solution converged to the expected Z-N-D detonation under further 

mesh refinement. 
Here we provide a theoretical explanation for the numerical 

results presented in section 4. We work within the context of 
the simplified model and derive a class of nonphysical discrete 

traveling waves for the basic inviscid fractional step scheme 

introduced in section 2. These exact solutions of the difference 

equations will be numerical weak detonations moving at the speed. 

s· * Ax/At. i.e •• one grid spaCing per time step. as observed 
in the calculations from section 4. The (numerical) stability of 

such discrete weak detonations has been demonstrated in the ca'cu­

lations reported in section 4 for sufficiently coarse meshes. 

We consider the problem of computing the Z-N-D detonation 
dynamically as a solution of the system 
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Ut + (u 2/2 • qOZ)x = 0 

Zx .: K+ (u)Z 
(5.1) 

with initial data given by a C-J detonation wave for the fixed 
wave speed s. i.e •• with the initial data having the form (3.3). 
These initial data should satisfy the reacting Hugoniot equation 

H(Ul*·uR,s) = qo 

where H(u.v,s) E s(u-v}_(u2.v2)/2 is the Hugoniot function. 

We are interested in wave solutions of a difference version 
of (5.1) travelling with the speed s' = 6X/6t. First. we note 
that 5' shoul d be 1 arger than s. Indeed I the C-F-L stab; 1 i ty 
condition requires (6t/6X)UL* • m < 1, i.e •• s· > uL*. On the 
other hand, ul * > 5 > uR• It yields s' ) s. Now it is easily 
seen that since s' > s, the quadratic equation 

H(u.UR,S') - qo • 0 

has two solutions UL* and UL*, and that 

UL* > 5' > UL* > UL* > uR • 

The main result of this section is concerned with the exis­
tence of a travelling wave solution w~ • (u~, Z~) of the difer-

J J J 

enee scheme approximating (5.1) which has these properties: 

A) It travels wi th speed 5 I, i.e •• 
N H-l w. :I, W. 1 
J J-

.... o • wj _k for all N > 0 and j. (S.2) 

B) It approximates an inviscid weak detonation wave which con­
nects the states (uR.l) and (U

l
*. O): 

lim w~ = (UL*.O). J+-- J 
{5.3) 

Such solutions of the numerical scheme define the descrete weak 
detonations moving at mesh speed which were observed 
computationally in the last section. 
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For simplicity we assume that the initial data (3.4) satisfy 

uR > O. In this case the wave speeds are positive and Godunov's 

scheme reduces to the upwind scheme. 

PROPOSITION (Existence of Numerical Weak Detonations). For the 

inviscid fractional step scheme based on the upwind scheme. 

explicit nonphysical travelling waves satisfying (5.2) and (S.3) 

exist under the following conditions on heat release qa' reac­

tion rate K. and mesh spacing Ax: 

A) For ign;t10n temperature kinetics with ignition temperature u 
satisfying ~ > uRI nonphysical discrete travelling waves with 

a monotone profile exist provided the two explicit inequalities 

_ ~x 

~ (UL* and H(U.URtS') ( qO(l - e --2--) (5.4) 

are satisfied. 

8) For a general kinetics structure function +(u) satisfying 
+(uR) = 0 and +(u) > 0 for u

R 
( u, a numerical weak detonation 

profile exists provided that there 1s a solut~on Uo with 
uR < Uo < Ul * to the nonlinear algebraic equation 

(5.S) 

The proposition ;s proved by the effective construction of 
the solution of the equation 

(5.6) 

where wI is a nonlinear function of wO given by the marching 

formulas of the difference scheme. Equation {5.6} is solved 
recursively, Wj = (URtl) for j ) 1. Wj is generated from Wj+l for 

j '0. The solvability of {5.6) is guaranteed by the conditions 

(5.4) or (5.5). We refer the reader to [2J for the detailed 
proof. 

In conclusion we note that any of the quantttative algebraic 
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conditions in (5.4) or (5.5) is satisfied if either 

A) K' :: KAx is large enough .£!. 

B) the heat release qo is large enough for a fixed mesh. 

In fact K' for these inviscid methods for reacting gas plays an 

analogous role as the mesh Reynolds number in viscous incompres­

sible flow. The behavior of the numerical method for K' large 

for the reacting compressible Euler equations mimics the behavior 
for high reaction rate KQ documented in section 3 for the 

reacting compressible Navier-Stokes equations. 
The explicit conditions for the existence of numerical weak 

detonations provide a quantitative guideline for the validity of 
the basic fractional step schemes in coarser mesh calculations. 
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